
NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 1 - 

 

 

 
 
 
 
 

UNIT -5 
 
 
 

5.1 CANONICAL LR PARSING 
 

By splitting states when necessary, we can arrange to have each state of an LR parser 

indicate exactly which input symbols can follow a handle a for which there is a possible 

reduction to A. As the text points out, sometimes the FOLLOW sets give too much 

informationand doesn't (can't) discriminate between different reductions. 

The general form of an LR(k) item becomes [A -> a.b, s] where A -> ab is a production and s 

is a string of terminals. The first part (A -> a.b) is called the core and the second part is the 

lookahead. In LR(1) |s| is 1, so s is a single terminal. 

A -> ab is the usual righthand side with a marker; any a in s is an incoming token in which 

we are interested. Completed items used to be reduced for every incoming token in 

FOLLOW(A), but now we will reduce only if the next input token is in the lookahead set s..if 

we get two productions A -> a and B -> a, we can tell them apart when a is a handle on the 

stack if the corresponding completed items have different lookahead parts. Furthermore, note 

that the lookahead has no effect for an item of the form [A -> a.b, a] if b is not e. Recall that 

our problem occurs for completed items, so what we have done now is to say that an item of 

the form [A -> a., a] calls for a reduction by A -> a only if the next input symbol is a. More 

formally, an LR(1) item [A -> a.b, a] is valid for a viable prefix g if there is a derivation 

S =>* s abw, where g = sa, and either a is the first symbol of w, or w is e and a is $. 
 

5.2  ALGORITHM FOR CONSTRUCTION OF THE SETS OF LR(1) ITEMS 
 

Input: grammar G' 
 

Output: sets of LR(1) items that are the set of items valid for one or more viable prefixes of 
 

G' 

Method: 

closure(I) 

begin 

repeat 

for each item [A -> a.Bb, a] in I, 

each production B -> g in G', 



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 2 - 

 

 

and each terminal b in FIRST(ba) 

 

such that [B -> .g, b] is not in I do 

add [B -> .g, b] to I; 

until no more items can be added to I; 
 

end; 
 

5.3 goto(I, X) 
 

begin 
 

let J be the set of items [A -> aX.b, a] such that 
 

[A -> a.Xb, a] is in I 

return closure(J); 

end; 

procedure items(G') 
 

begin 
 

C := {closure({S' -> .S, $})}; 
 

repeat 
 

for each set of items I in C and each grammar symbol X such 

that goto(I, X) is not empty and not in C do 

add goto(I, X) to C 
 

until no more sets of items can be added to C; 
 

end; 

An example, 

Consider the following grammer, 

S’->S 

S->CC 

C->cC 

C->d 

Sets of LR(1) items 

I0:  S’->.S,$ 

S->.CC,$ 

C->.Cc,c/d 
C->.d,c/d 

 
I1:S’->S.,$ 

I2:S->C.C,$ 

C->.Cc,$ 

C->.d,$



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 3 - 

 

 

 
 

I3:C->c.C,c/d 

C->.Cc,c/d 

C->.d,c/d 

 

I4: C->d.,c/d 

I5: S->CC.,$ 

I6: C->c.C,$ 

C->.cC,$ 

C->.d,$ 

 
I7:C->d.,$ 

I8:C->cC.,c/d 

I9:C->cC.,$ 

Here is what the corresponding DFA looks like 
 



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 4 - 

 

 

 

 

 
 

5.4 ALGORITHM FOR CONSTRUCTION OF THE CANONICAL LR PARSING 

TABLE 

 
Input: grammar G' 

Output: canonical LR parsing table functions action and goto 
 

1.   Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'.State i is 

constructed from Ii. 

2.   if [A -> a.ab, b>] is in Ii and goto(Ii, a) = Ij, then set action[i, a] to "shift j". Here a 

must be a terminal. 

3.   if [A -> a., a] is in Ii, then set action[i, a] to "reduce A -> a" for all a in 

FOLLOW(A). Here A may not be S'. 

4.   if [S' -> S.] is in Ii, then set action[i, $] to "accept" 

5.   If any conflicting actions are generated by these rules, the grammar is not LR(1) 

and the algorithm fails to produce a parser. 

6.   The goto transitions for state i are constructed for all nonterminals A using the 

rule: If goto(Ii, A)= Ij, then goto[i, A] = j. 

7.   All entries not defined by rules 2 and 3 are made "error". 
 

8.   The inital state of the parser is the one constructed from the set of items 

containing [S' -> .S, $].



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 5 - 

 

 

 
 
 

 

5.5.LALR PARSER: 
 

We begin with two observations. First, some of the states generated for LR(1) parsing have 

the same set of core (or first) components and differ only in their second component, the 

lookahead symbol. Our intuition is that we should be able to merge these states and reduce 

the number of states we have, getting close to the number of states that would be generated 

for LR(0) parsing. This observation suggests a hybrid approach: We can construct the 

canonical LR(1) sets of items and then look for sets of items having the same core. We merge 

these sets with common cores into one set of items. The merging of states with common 

cores can never produce a shift/reduce conflict that was not present in one of the original 

states because shift actions  depend only on the core, not the lookahead. But it is possible for 

the merger to produce a reduce/reduce conflict. 

Our second observation is that we are really only interested in the lookahead symbol in 
 

places where there is a problem. So our next thought is to take the LR(0) set of items and add 

lookaheads only where they are needed. This leads to a more efficient, but much more 

complicated method. 

5.6 ALGORITHM FOR EASY CONSTRUCTION OF AN LALR TABLE 
 

Input: G' 
 

Output: LALR parsing table functions with action and goto for G'. 

Method: 

1.   Construct C = {I0, I1 , ..., In} the collection of sets of LR(1) items for G'. 
 

2.   For each core present among the set of LR(1) items, find all sets having that core 

and replace these sets by the union. 

3.   Let C' = {J0, J1 , ..., Jm} be the resulting sets of LR(1) items. The parsing actions 

for state i are constructed from Ji in the same manner as in the construction of the 

canonical LR parsing table. 

4.   If there is a conflict, the grammar is not LALR(1) and the algorithm fails. 
 

5.   The goto table is constructed as follows: If J is the union of one or more sets of 

LR(1) items, that is, J = I0U I1 U ... U Ik, then the cores of goto(I0, X), goto(I1, 

X), ..., goto(Ik, X) are the same, since I0, I1 , ..., Ik all have the same core. Let K 

be the union of all sets of items having the same core asgoto(I1, X).



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 6 - 

 

 

 
 

6.   Then goto(J, X) = K. 

Consider the above example, 

I3 & I6 can be replaced by their union 
 

I36:C->c.C,c/d/$ 

C->.Cc,C/D/$ 

C->.d,c/d/$ 

I47:C->d.,c/d/$ 

I89:C->Cc.,c/d/$ 

Parsing Table 
 

 
 
 
 

state c d $ S C 

0 S36 S47  1 2 

1   Accept   

2 S36 S47   5 

36 S36 S47   89 

47 R3 R3    

5   R1   

89 R2 R2 R2   

5.7HANDLING ERRORS 
The LALR parser may continue to do reductions after the LR parser would have spotted an 

 

error,  but the LALR parser will never do a shift after the point the LR parser would have 

discovered the error and will eventually find the error. 

 
 

5.8 DANGLING ELSE 
 

The dangling else is a problem in computer programming in which an optional else clause in 

an If–then(–else) statement  results  in  nested  conditionals  being  ambiguous.  Formally, 

the context-free grammar of the language is ambiguous, meaning there is more than one 

correct parse tree.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Conditional_(computer_programming)#If.E2.80.93then.28.E2.80.93else.29
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Ambiguous_grammar


NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 7 - 

 

 

 
 

In many programming languages one may write conditionally executed code in two forms: 
 

the if-then form, and the if-then-else form – the else clause is optional: 
 

 
 
 
 

 
 

Consider the grammar: 

S ::= E $ 

E ::= E + E 
 

| E * E 
 

| ( E ) 
 

| id 
 

| num 
 

and four of its LALR(1) states: 

I0:  S ::= . E $    ? 

E ::= . E + E  +*$       I1:  S ::= E . $    ?      I2:  E ::= E * . E   +*$ 

E ::= . E * E  +*$         E ::= E . + E  +*$           E ::= . E + E   +*$ 

E ::= . ( E ) +*$           E ::= E . * E  +*$            E ::= . E * E   +*$ 

E ::= . id     +*$                                                    E ::= . ( E )  +*$ 

E ::= . num    +*$      I3:  E ::= E * E .   +*$         E ::= . id      +*$ 
 

E ::= E . + E   +*$        E ::= . num     +*$

http://en.wikipedia.org/wiki/Programming_language


NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 8 - 

 

 

 
 

E ::= E . * E   +*$ 
 

Here we have a shift-reduce error. Consider the first two items in I3. If we have a*b+c and 

we parsed a*b, do we reduce using E ::= E * E or do we shift more symbols? In the former 

case we get a parse tree (a*b)+c; in the latter case we get a*(b+c). To resolve this conflict, we 

can specify that * has higher precedence than +. The precedence of a grammar production is 

equal to the precedence of the rightmost token at the rhs of the production. For example, the 

precedence of the production E ::= E * E is equal to the precedence of the operator *, the 

precedence of the production E ::= ( E ) is equal to the precedence of the token ), and the 

precedence of the production E ::= if E then E else E is equal to the precedence of the token 

else. The idea is that if the look ahead has higher precedence than the production currently 

used, we shift. For example, if we are parsing E + E using the production rule E ::= E + E 

and the look ahead is *, we shift *. If the look ahead has the same precedence as that of the 

current production and is left associative, we reduce, otherwise we shift. The above grammar 

is valid if we define the precedence and associativity of all the operators. Thus, it is very 

important when you write a parser using CUP or any other LALR(1) parser generator to 

specify associativities and precedence’s for most tokens (especially for those used as 

operators). Note: you can explicitly define the precedence of a rule in CUP using the %prec 

directive: 

E ::= MINUS E   %prec UMINUS 
 

where UMINUS is a pseudo-token that has higher precedence than TIMES, MINUS etc, so 

that -1*2 is equal to (-1)*2, not to -(1*2). 

Another thing we can do when specifying an LALR(1) grammar for a parser generator is 

error recovery.  All  the  entries  in  the ACTION  and  GOTO tables  that  have no  content 

correspond to syntax errors. The simplest thing to do in case of error is to report it and stop 

the parsing. But we would like to continue parsing finding more errors. This is called error 

recovery. Consider the grammar: 

S ::= L = E ; 
 

| { SL } ; 
 

| error ; 

SL ::= S ; 

| SL S ;



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 9 - 

 

 

 
 

The special token error indicates to the parser what to do in case of invalid syntax for S (an 

invalid statement). In this case, it reads all the tokens from the input stream until it finds the 

first semicolon. The way the parser handles this is to first push an error state in the stack. In 

case of an error, the parser pops out elements from the stack until it finds an error state where 

it can proceed. Then it discards tokens from the input until a restart is possible. Inserting 

error handling productions in the proper places in a grammar to do good error recovery is 

considered very hard. 

5.9LR ERROR RECOVERY 
 

An LR parser will detect an error when it consults the parsing action table and find a blank or 

error entry.  Errors are never detected by consulting the goto table. An LR parser will detect 

an error as soon as there is no valid continuation for the portion of the input thus far scanned. 

A canonical LR parser will not make even  a single reduction before announcing the error. 

SLR and LALR parsers may make several reductions before detecting an error, but they will 

never shift an erroneous input symbol onto the stack. 

5.10 PANIC-MODE ERROR RECOVERY 
 

We can implement panic-mode error recovery by scanning down the stack until a state s with 

a goto on a particular nonterminal A is found. Zero or more input symbols are then discarded 

until a symbol a is found that can legitimately follow A. The parser then stacks the state 

GOTO(s, A) and resumes normal parsing. The situation might exist where there is more than 

one choice for the nonterminal A. Normally these would  be nonterminals representing major 

program pieces, e.g. an expression, a statement, or a block. For example, if A is the 

nonterminal stmt, a might be semicolon or }, which marks the end of a statement sequence. 

This method of error recovery attempts to eliminate the phrase containing the syntactic error. 

The parser determines that a string derivable from A contains an error. Part of that string has 

already been processed, and the result of this processing is a sequence of states on top of the 

stack. The remainder of the string is still in the input, and the parser attempts to skip over the 

remainder of this string by looking for a symbol on the input that can legitimately follow A. 

By removing states from the stack, skipping over the input, and pushing GOTO(s, A) on the 

stack, the parser pretends that if has found an instance of A and resumes normal parsing.



NSRIT 

K.Shankar,Assoc Professor 
Dept of CSE - 10 - 

 

 

 
 

5.11 PHRASE-LEVEL RECOVERY 

 
Phrase-level recovery is implemented by examining each error entry in the LR action table 

and deciding on the basis of language usage the most likely programmer error that would 

give  rise  to  that  error.  An  appropriate  recovery  procedure  can  then  be  constructed; 

presumably the top of the stack and/or first input symbol would be modified in a way deemed 

appropriate for each error entry. In designing specific error-handling routines for an LR 

parser, we can fill in each blank entry in the action field with a pointer to an error routine that 

will take the appropriate action selected by the compiler designer. 

 
The actions may include insertion or deletion of symbols from the stack or the input or both, 

or alteration and transposition of input symbols. We must make our choices so that the LR 

parser will not get into an infinite loop. A safe strategy will assure that at least one input 

symbol will be removed or shifted eventually, or that the stack will eventually shrink if the 

end of the input has been reached. Popping a stack state that covers a non terminal should be 

avoided, because this modification eliminates from the stack a construct that has already been 

successfully parsed. 


